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My goals
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•To show you a new and important domain of application 
of mathematics 

•To introduce you to bilevel optimization 

•To convince you that “to have a valid formulation” is not 
enough



Bilevel Problem
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max

x,y

f(x, y)

s.t. x 2 X

y 2 S(x)

where S(x) = argmax

y

g(x, y)

s.t.(x, y) 2 Y



Adequate framework for 
Stackelberg game
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• Leader: 1st level, 

• Follower: 2nd level, 

• Leader takes follower’s optimal reaction 
into account.

6

(1905 - 1946)



Bimatrix game
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Leader

Follower

(2,1)

(1,0)

(4,0)

(3,2)

A

B

C D

0.5

A Stackelberg solution to the game (B,D) yielding a payoff of (3.5,1)

0.5

Follower
Pure Strategy

Leader
Mixed
Strategy



Stackelberg vs Nash
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Player 2 - C Player 2 - D 
Player 1 - A (2,1) (4,0)
Player 1 - B (1,0) (3,2)

Nash equilibrium: Player 1-A and Player 2-C => (2,1) 

Stackelberg solution: Player 1-B and Player 2-D => (3,2) 

Nash equilibrium may not exist 
There is always a Stackelberg solution (optimistic)



Stackelberg Games
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Leader Follower

(R,C)

Stackelberg Game p-Followers Stackelberg Game
(Conitzer and Sandblom, 2006)

Leader

Follower 1

Objective of the Game
• Reward-maximizing strategy for the Leader. 
• Follower will best respond to observable Leader’s strategy.

9

Follower

Follower 2 Follower 3 Follower p…



Applications 
(Tambe et al., USC)
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The beauty of this approach 

comes from  

 the randomisation
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1-Follower general 
Stackelberg game 
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• Follower optimally chooses one strategy j with probability 1

• For each possible strategy j of the follower, determine the probabilities xi

that leader chooses strategy i by solving the LP:

max

X

i2I

Rijxi

s.t.

X

i2I

xi = 1

xi � 0X

i2I

Cijxi �
X

i2I

Cilxi, 8l 2 J



Modeling a p-followers 
general Stackelberg game
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Follower type k 2 K and ⇡ 2 [0, 1]

xi = probability with which the Leader plays pure strategy i

x 2 S|I| := {x 2 [0, 1]|I| :
X

i2I

xi = 1}

qk 2 S|J| := {q 2 [0, 1]|J| :
X

j2J

qj = 1}, 8k 2 K

qkj = probability with which type k Follower plays pure strategy j

Rk, Ck 2 R|I|⇥|J|, 8k 2 K



Bilevel formulation
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(BIL-p-G) Max

x,q

X

i2I

X

j2J

X

k2K

⇡

k

R

k

ij

x

i

q

k

j

s.t.

X

i2I

x

i

= 1,

x

i

2 [0, 1] 8i 2 I,

q

k

= argmax

r

k

8
<

:
X

i2I

X

j2J

C

k

ij

x

i

r

k

j

9
=

; 8k 2 K,

r

k

j

2 [0, 1] 8j 2 J, 8k 2 K,

X

j2J

r

k

j

= 1 8k 2 K.



Bilinear formulation 
Paruchuri et al.(2008)
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(QUAD) max

x,q,a

X

i2I

X

j2J

X

k2K

⇡

k

R

k

ij

x

i

q

k

j

s.t.

X

i2I

x

i

= 1,

X

j2J

q

k

j

= 1 8k 2 K,

0  (a

k �
X

i2I

C

k

ij

x

i

)  (1� q

k

j

)M 8j 2 J, 8k 2 K,

x

i

2 [0, 1] 8i 2 I,

q

k

j

2 {0, 1} 8j 2 J, 8k 2 K,

a

k 2 R 8k 2 K.



MIP1Kiekintvelt et al. (2008)
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(MIP1) max

x,q,a,d

X

k2K

⇡

k

d

k

s.t. d

k 
X

i2I

R

k

i,j

x

i

+M1(1� q

k

j

), 8j 2 J, 8k 2 K,

X

i2I

x

i

= 1,

X

j2J

q

k

j

= 1 8k 2 K,

0  (a

k �
X

i2I

C

k

ij

x

i

)  M2(1� q

k

j

) 8j 2 J, 8k 2 K,

x

i

2 [0, 1] 8i 2 I,

q

k

j

2 {0, 1} 8j 2 J, 8k 2 K,

a

k 2 R 8k 2 K.



Linearize 
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xiq
k
j = z

k
ij , 8i 2 I, j 2 J, k 2 K

• z

k
ij 2 [0, 1], 8i 2 I, j 2 J, k 2 K

• xi =
P
j2J

z

k
ij , 8i 2 I, k 2 K

• q

k
j =

P
i2I

z

k
ij , 8j 2 J

12 17



MIP2 Paruchuri (2008)
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(MIP2) max

x,q,a

X

i2I

X

j2J

X

k2K

⇡

k

R

k

ij

z

k

ij

s.t. x

i

=

X

j2J

z

k

ij

, 8i 2 I, k 2 K

q

k

j

=

X

i2I

z

k

ij

, 8j 2 J

X

i2I

x

i

= 1,

X

j2J

q

k

j

= 1 8k 2 K,

0  (a

k �
X

i2I

C

k

ij

x

i

)  (1� q

k

j

)M 8j 2 J, 8k 2 K,

z

k

ij

2 [0, 1] 8i 2 I, 8j 2 J, 8k 2 K,

x

i

2 [0, 1] 8i 2 I,

q

k

j

2 {0, 1} 8j 2 J, 8k 2 K,

a

k 2 R 8k 2 K.



Eliminate  ak 
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0  (ak �
P

i2I C
k
ijxi)  (1� q

k
j )M, 8j 2 J, 8k 2 K

P
i2I(C

k
il � C

k
ij)xi  (1� q

k
j )M, 8j, l 2 J, 8k 2 K

P
i2I C

k
ijxi  a

k 
P

i2I C
k
ilxi +M(1� q

k
l ),

8j, l 2 J, k 2 K



Apply RLT  
Sheraly, Adams (1999)
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P
i2I(C

k
il � C

k
ij)xi  (1� q

k
j )M, 8j, l 2 J, 8k 2 K

P
i2I(C

k
il � Ck

ij)z
k
ij  0, 8j, l 2 J, 8k 2 K

P
i2I(C

k
il � C

k
ij)xiq

k
j (1� q

k
j )q

k
jM



MIP3
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(MIP-p-G) max

x,q

X

i2I

X

j2J

X

k2K

⇡kRk

ij

zk
ij

s.t.

X

i2I

X

j2J

zk
ij

= 1, 8k 2 K

X

i2I

(Ck

ij

� Ck

i`

)zk
ij

� 0 8j, ` 2 J, 8k 2 K,

zk
ij

� 0 8i 2 I, 8j 2 J, 8k 2 K,
X

i2I

zk
ij

2 {0, 1} 8j 2 J, 8k 2 K,

X

j2J

zk
ij

=

X

j2J

z1
ij

8i 2 I, 8k 2 K.



About those MIPs
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• zLP (MIP3)  zLP (MIP2)  zLP (MIP1)

• LP (MIP3) is “integer” for k = 1



against the total percentage of problems solved.

We study the behavior of formulations (D2), (FMD2), (DOBSS), (FMDOBSS) and
(MIP-p-G). Figures 4.1 and 4.2 show this behavior when the payo↵ matrices are generated
without variability and with variability respectively.
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Figure 4.1: GSGs: I={10,20,30}, J={10,20,30}, K={2,4,6}–without variability.

We observe that the instances where variability is introduced in the payo↵ matrices solve
faster than those where no variability is considered. When there is no variability, (DOBSS)
and (MIP-p-G) are the two most competitive formulations. (D2) also has a nice behavior
for the mid-range instances but significantly slows down as the size of the instances increase.
Introducing variability in the payo↵ matrices, however, leads to a clear dominance of (MIP-
p-G) with (DOBSS) coming in a close second and (D2) becoming noncompetitive for these
instances. With regard to time spent solving the linear relaxation of the problems, (MIP-p-
G) is clearly noncompetitive, having the most variables and constraints, O(|K||J |2). (D2),
having the lightest LP relaxation with O(|K||J |) variables and constraints, is the fastest.
With respect to number of nodes and gap percentage our theoretical findings are corrob-
orated showing that (MIP-p-G) is the tightest formulation and therefore uses the fewest
nodes. The e↵ect is further intensified when variability in the payo↵ matrices is introduced.

For further insight on the tightness of the formulations refer to Table 4.1. Table 4.1
shows the total mean gap across the formulations. While the gap is significantly tighter

17

Computational comparison
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Computational comparison
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Figure 4.2: GSGs: I={10,20,30}, J={10,20,30}, K={2,4,6}–with variability.

for (MIP-p-G) than for the other formulations, a mean gap of 7.56% still leaves room for
further improvement.

(D2) (FMD2) (DOBSS) (FMDOBSS) (MIP-p-G)
Mean Gap % 110.56 110.56 31.88 30.64 7.56

Table 4.1: Mean gap percentage recorded for each formulation for general Stackelberg
games.

Finally, remark that the Fourier-Motzkin formulations (FMD2) and (FMDOBSS) show
less exploration of nodes in the branch and bound scheme that their counterparts (D2) and
(DOBSS) but because of the significant increase in the number of constraints (against the
negligible loss of a few variables) makes them noncompetitive in terms of total running time
and LP time.

We may thus conclude an important finding. Altering the payo↵ structure of general
games by allowing some the values in the matrices to peak has an e↵ect on the di�culty of
the instances and (MIP-p-G) is the best equipped formulation to deal with such cases.

18
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Stackelberg security game
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• Payo↵s depend only on which target is attacked and whether it is covered

or not

•
Covered Uncovered

Defender Dk
(j|c) Dk

(j|u)
Attacker Ak

(j|c) Ak
(j|u)



Compact representation of 
Stackelberg Security Games

Study Group with industry-Avignon - May 2016 26

• Resources-Targets settings can be modeled as a Stackelberg Game BUT

if m ressources and n targets then

�n
m

�
pure strategies!

• Stackelberg Security Games can be more compactly represented.

• Solve for optimal coverage probabilities of the targets.



Stackelberg security game: 
“extended formulation”
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(QUAD) max

x,q,a

X

k2K

⇡

k

X

j2J

q

k

j

(D

k

(j|c)
X

i2I:j2i

x

i

+D

k

(j|u)
X

i2I:j /2i

x

i

)

s.t.

X

i2I

x

i

= 1,

X

j2J

q

k

j

= 1 8k 2 K,

0  a

k � (A

k

(j|c)
X

i2I:j2i

x

i

+A

k

(j|u)
X

i2I:j /2i

x

i

)  (1� q

k

j

)M 8j 2 J, 8k 2 K,

x

i

2 [0, 1] 8i 2 I,

q

k

j

2 {0, 1} 8j 2 J, 8k 2 K,

a

k 2 R 8k 2 K.



Stackelberg security game: 
“extended formulation”
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cj 1 - cj

(QUAD) max

x,q,a

X

k2K

⇡

k

X

j2J

q

k

j

(D

k
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i2I:j2i
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+D
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(j|u)
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i2I:j /2i

x

i
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i2I

x
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j2J
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k

j

= 1 8k 2 K,
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k � (A
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(j|c)
X

i2I:j2i

x

i

+A

k

(j|u)
X

i2I:j /2i

x

i

)  (1� q

k

j

)M 8j 2 J, 8k 2 K,

x

i

2 [0, 1] 8i 2 I,

q

k

j

2 {0, 1} 8j 2 J, 8k 2 K,
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k 2 R 8k 2 K.



  Stackelberg security game: 
compact formulation
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(QUAD) max

x,q,a

X

k2K

⇡

k

X

j2J

q
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j

(D

k
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j

+D

k

(j|u)(1� c

j

))

s.t.

X

i2I

x
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= 1,

X
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j

8j 2 J,

x

i

2 [0, 1] 8i 2 I,

X

j2J
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k

j

= 1 8k 2 K,

0  a

k � (A

k

(j|c)c
j

+A

k

(j|u)(1� c

j

)  (1� q

k

j

)M 8j 2 J, 8k 2 K,
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k
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2 {0, 1} 8j 2 J, 8k 2 K,
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Stackelberg security game 
compact formulation
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(SECU-K-Quad) Maxc

X

k2K

X

j2J

pk(q
k
j (cjD

k
(j|c) + (1� cj)D

k
(j|u)))

s.t. cj 2 [0, 1] 8j 2 J
X

j2J

cj  m,

qkj (cjA
k
(j|c)� (1� cj)A

k
(j|u)) � qkj (ctA

k
(t|c)� (1� ct)A

k
(t|u)) 8k 2 K,

qkj 2 {0, 1} 8j 2 J, 8k 2 K
X

j2J

qkj = 1 8k 2 K.



Stackelberg security game
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Extended formulations  
(x-space): MIP1 � �

��

MIP3MIP2

Compact formulations 
(c-space): MIP1 MIP2 MIP3

=
⊋ ⊋



Stackelberg security game: 
MIP3-compact 
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(SECU-p-MIP) Maxy

X

k2K

X

j2J

pk(D
k
(j|c)ykjj +Dk

(j|u)(qkj � ykjj))

s.t.

X

l2J

yklj  mqkj 8k, j,

0  yklj  qkj , 8k, j
X

j2J

qkj = 1, 8k,

Ak
(j|c)ykjj +Ak

(j|u)(qkj � ykjj)�A(l|c)yklj
�A(l|u)(qkl � yklj) � 0 8j, l, k,
X

l2J

yklj 2 {0, 1} 8l, k,

X

j2J

yklj =
X

j2J

y1lj 8l, k.



Link between MIP3 and 
SECU-p-MIP 
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• A pure strategy of the defender is a set of at most m targets

• y

k
hj =

P
i2I:h2i z

k
ij

• Proj(LP (PMIP3)) ⇢ LP (PSECU�p�MIP )



Computational comparison
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of the other two formulations for 80% of the instances. However, for the larger instances,
(MIP-p-S) is far faster than the other two formulations. For the last 5% of the instances,
(ERASER) is the worst performing formulation of the three. In terms of size of the formu-
lations, (ERASER) is the formulation with the least number of constraints and variables:
O(|J ||K|). Observe that (MIP-p-S) and (SDOBSS) have O(|J |2|K|) constraints and vari-
ables. Thus, these formulations have significantly heavier LP relaxations and thus take
longer time to solve than (ERASER) does. However, Figures 6.1 and 6.2 confirm our the-
oretical findings: (MIP-p-S) has, by far, the tightest LP relaxation and this also translates
into a clear dominance with respect to node usage in the branch and bound solving scheme.

In the above results we have observed a trend that indicates that for larger instances,
particularly in the case of payo↵ matrices with no variability, one could expect (ERASER)
and (SDOBSS) to perform very poorly compared to (MIP-p-G). To analyze this, we con-
sider instances where the payo↵ matrices have no variability and where K = {6, 8, 10, 12},
J = {30, 40, 50, 60, 70} and m is 25%, 50% and 75% of the targets. We generate 5 ran-
dom instances for each size. In addition, we consider a time limit of half an hour. The
computational results for these larger and harder to solve instances are shown in Figure 6.3.
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Figure 6.3: SSGs: K = {6, 8, 10, 12}, J = {30, 40, 50, 60, 70}–without variability

Note that (MIP-p-G) is able to solve 95% of the 300 instances within the 30 minute time
limit, outperforming (SDOBSS) and (ERASER) which are only able to solve 56% and 45%
of the instances, respectively, within the same time frame. For the 45% of instances which
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can be solved by the three formulations, we observe that (MIP-p-G) o↵ers a much tighter
gap percentage than the other two formulations. Because of this, the node usage in the
branch and bound scheme is significantly smaller in (MIP-p-G) compared to (ERASER)
and (SDOBSS).

For further insight on the gap percentage of the di↵erent formulations, refer to Table 6.1.
Table 6.1 records the mean gap percentage across all the instances for the three formulations
under study. Observe that (MIP-p-S) is significantly tighter than the LP relaxations of the
other formulations.

(ERASER) (SDBOSS) (MIP-p-S)
Mean Gap % 204.82 28.76 1.72

Table 6.1: Mean gap percentage recorded for each formulation for Stackelberg security
games.

We may thus conclude that when the payo↵ matrices are randomly generated without
variability, (MIP-p-S) is the fastest formulation for the larger instances. (ERASER) is the
fastest formulation when we endow the security game with further structure by allowing
matrices to experience variability. Even then, toward the largest instances, (ERASER)
looses ground to (MIP-p-S). Thus, the larger the instances become, the better equipped
(MIP-p-S) is to e�ciently deal with them, outperforming the competing formulations in
terms of speed. This is in no small part due to the fact that (MIP-p-S) has the tightest
LP relaxation by far. The quality of the upper bound obtained when solving (MIP-p-S)
translates into a smaller branch and bound tree and this, in turn, translates into reaching
optimality of the integer problem faster.

7 Conclusions

In this paper we have:

• presented (MIP-p-G), a novel formulation for p-follower Stackelberg games. In ad-
dition, we have shown that its restriction to a single follower game is (MIP-1-G), a
formulation which was shown to be ideal in [Conitzer and Korzhyk, 2011].

• performed a polyhedral analysis of the p-follower general game formulations which
has led to a ranking in terms of the tightness of their LP relaxations. We have shown
(MIP-p-G) to be the tightest.

• successfully bridged the gap between Stackelberg games and Stackelberg security
games by relating the general game formulations to their security counterparts by
means of projections on the appropriate space of variables.

• presented (MIP-p-S), a novel formulation for p-attacker Stackelberg security games.
We have also shown that (MIP-1-S), its restriction to a single attacker game, is an
ideal formulation.

33

SSGs: |K| 2 {4, 6, 8, 12}, |J | 2 {30, 40, 50, 60, 70},m 2 {0.25|J |, 0.50|J |, 0.75|J |}
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• Bilevel models and MIP reformulations are appropriate to 
solve Stackelberg bimatrix games  

•New MIP formulations for general and security cases 

• A valid formulation is not enough! 

•Future: develop decomposition solution approach (DW, 
Benders) based on strongest model. 

•Future: study problems with non homogeneous ressources, 
different second level…
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How to determine mixed strategies 
from coverage probabilities

Study Group with industry-Avignon - May 2016 37

X

h:j2h

xh = cj , 8j

X

h

xh = 1

xh � 0, 8h



Example:m=2 
C1=0.7, C2=0.8, C3=0.5
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